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Abstract 

The restriction of a hypercubic lattice in six 
dimensions to a subspace of three dimensions yields 
a well known quasiperiodic description of quasicrys- 
tals with non-crystallographic icosahedral point sym- 
metry. A quasicrystal model is considered where this 
description is further reduced to a non-periodic quasi- 
lattice formed from two types of rhombohedra. Given 
the density on two representative rhombohedral cells, 
the full Fourier transform is expressed in closed form 
through structure factors, quasilattice factors and 
kinematical factors. The diffraction from point scat- 
terers in the quasilattice is computed as an example. 

1. Introduction 

Crystallography in three-dimensional space E 3 uses  
the concept of a unit cell, its possible point symmetry, 
and its periodic repetition under translations. Given 
the atomic density f (x)  in position or x-space on the 
unit cell, the structure factor is essentially its Fourier 
transform f (k )  in k-space. The Fourier transform of 
the full periodic density, which determines the diffrac- 
tion pattern, is then the product of the structure factor 
f (k )  with the Fourier transform of the lattice which, 
due to the periodicity, selects in k-space the discrete 
set of reciprocal-lattice points which we denote by k R. 

Quasicrystals, in particular those with non-crys- 
tallographic point symmetry, lack periodicity but 
have their Fourier transform still on a discrete set of 
points in k-space. The corresponding class of 
functions is in x-space characterized by almost or 
quasiperiodicity (cf Bohr, 1925a, b, 1926). Among 
this class of quasiperiodic functions there exists a 
class characterized by a non-periodic cell structure. 
The cells of this class appear as building blocks of a 
non-periodic quasilattice. The structures of this class 
have been called quasicrystal models by Kramer 
(1988). 

In the present paper we consider the particular 
icosahedral quasilattice derived from a hypercubic 
lattice in E 6. Its cells are two types of rhombohedra 
(cf. Mackay, 1982; Kramer & Neri, 1984). As shown 
by Kramer (1988), these two rhombohedra serve as 
quasicrystal cells of the corresponding quasilattice. 
The Fourier transform admits a factorization into 
structure factors and factors from the quasilattice. 
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Explicit and closed expressions are given for the 
Fourier transform. To illustrate the results to be 
expected from quasicrystal models, the diffraction is 
computed for point scatterers in the quasilattice. 

2. The icosahedral and hyperoctahedral point groups 

The icosahedral group I of order 60 may be defined 
abstractly by its generators g,,,, m = 5, 3, 2 and by 
relations between them (Coxeter & Moser, 1965). The 
crystallographic aspects of this group are better 
described by its action on Euclidean space E 3 of 
dimension 3. The well known stereographic projec- 
tion of the six fivefold, the ten threefold and the 15 
twofold axes (Hahn & Klapper, 1983) is displayed 
in Fig. 1. Moreover the-three sets of axes have been 
labelled by numbers, and by a bar in cases where the 
vectors associated with a right-hand rotation point 
downward. 

The three rotation axes labelled no. 1 we choose 
as the generators gs, g3 and g2. The twofold axis no. 
15 is perpendicular to all these axes; we denote its 
generator by g~. 

/ \ \,~- \ ~ .  I . o / - % /  / \ 

% \ A / 

W -W)-- ,Y 
Fig. 1. Stereographic projection of icosahedral symmetry opera- 

tions in E 3. The fivefold axis labelled i corresponds to the 
projection of the hypercubic basis vector b, onto E 3. For the 
labels of the threefold and twofold axes see proposition 2.2. For 
the coordinate description of the symmetry operations given in 
Table 4 we use orthogonal axes corresponding to the directions 
of the twofold axes 15, 1 and 8 respectively. 
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Table 1. The icosahedral group I, its dihedral sub- 
groups and their coset generators 

Subgroup Generators Coset generators 
D5 gs,g'2 c~=(gs)a(g3) v, i = a + y + l  

a = 0 , . . . , 4 ;  7 = 0 , 1  1 - i < - - 6  
a > _ l ~ 7 = l  

/93 g3,g~ ci = (gs)"(g2) ~ i = a + f l + l  
t ~ = 0 , . . . , 4 ;  f l = 0 , 1  1<- i<-10  

D2 g2, g~ c 7 = (gs)'~(g2)t3(g3) v i = a + 5(/3 + 7) + 1 
a = 0 , . . . , 4 ;  / 3 = 0 , 1  1-<i-<15 

y = 0 ,  1; /3<-y 

2.1. Definition 
The dihedral subgroups Dm generated by gm and 

g~ for m = 5, 3, 2 we denote by Ds, D3 and DE. 

Consider the left cosets I /D , ,  of the icosahedral 
group with respect to a dihedral subgroup Din. By 

c,, i =  1 , . . . ,  60/(2m) (2.1) 

we denote sets of generators for the coset I /Dm. An 
explicit choice is given in Table 1. Different dihedral 
subgroups 'are distinguished by primes. 

The group elements corresponding to fivefold, 
threefold and twofold axes are conjugate respectively 
within I. Each axis may be associated with a dihedral 
group conjugate to one of the three subgroups 
described in definition 2.1. Since there is no other 
group element in I which commutes with a given 
dihedral subgroup, one gets: 

2.2. Proposition 
The left coset generators ci by the conjugation map 

~,: D,, ~ ciDmc7, 1, i =  1 , . . . ,  60/(2m) (2.2) 

generate the dihedral groups associated with the axes 
of L 

Through this correspondence, the index i of a coset 
generator labels the axes of the icosahedral group. 
With the choice 

cl = e, (2.3) 

these labels appear in Table 1 and are used in Fig. 1 
to enumerate the axes. 

The action of I on E 3 used so far corresponds in 
representation theory to one of the two three- 
dimensional irreducible representations o f / ,  denoted 
by [312] by Haase, Kramer, Kramer & Lalvani (1987). 
The two three-dimensional representations appear in 
the explicitly reduced form of a six-dimensional rep- 
resentation. The matrices of the generators for these 
representations are given by Kramer (1987). The six- 
dimensional representation is technically obtained as 
a representation of I induced from a one-dimensional 
representation of D5 (Haase et al., 1987). 

For the present purpose this six-dimensional con- 
struction may be obtained in a non-technical fashion 
as follows: Any element g of I corresponds to a 

Table 2. The generators of the icosahedral group as 
elements of  the hyperoctahedral group 0 ( 6 )  in the 

notation of equation (2.4) 

G r o u p  e l e m e n t  

g5 

P e r m u t a t i o n  m a t r i x  

3 4 5 6 

3 1 6 - 4  - 

- 5  3 2 - 4  - 1  - 

- - 3  - 2  - 6  - 5  - 

rotation associated with one of the axes shown in Fig. 
1. The action of g on E 3 must transform the set of 
six fivefold rotation axes into themselves and hence 
may be described by a signed permutation of the 
numbers 1 , . . . ,  6. A sign e -- +1 indicates if an axis 
is to be reversed under g. For the generators, these 
signed permutations are given in Table 2. We use the 
shorthand notation 

[ , . . . 6 ]  
( e , p ) ~  e,p(1) . . .  e6p(6) " 

Multiplication of group elements clearly yields a 
homomorphism. Once the permutations are represen- 
ted by 6 x 6 permutation matrices, this leads to an 
embedding into the hyperoctahedral point group 
0 (6 )  (Kramer & Haase, 1988): 

2.3. Definition 
The defining representation for an element (e, p) 

of the hyperoctahedral  group O(n)  is the product of 
an n x n diagonal reflection matrix e and an n x n 
permutation matrix associated with p, 

Dij( e, p) = Ei~i, pU). (2.5) 

The hyperoctahedral  group consists of all these ele- 
ments and has the order 

10(n)l= n!2". (2.6) 
It is the point group of the symmorphic hypercubic 
space group which we denote as (T, O(n)) ,  with T 
being the hypercubic translation group. 

From the six-dimensional construction given 
above, one finds: 

2.4. Proposition 
The icosahedral group I is a subgroup of the hyper- 

octahedral point group 0-2(6) and hence of the hyper- 
cubic space group. 

The six-dimensional representation of I is reduc- 
ible. Its explicit reduction into the representations 
[312 ] and [312 ] is obtained by transforming with the 
6 x 6 matrix M given in Table 3 which is adapted to 
the present notation from Kramer (1987). The matrix 
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Tab le  3. The reducing matrix M 

The ith column of the matrix M corresponds to the ith basis vector 
of the hypercubic lattice. The three top and bottom rows determine 
the projections of these vectors onto the subspaces E 3 and E 3. We 
use s=sinfl,  c=cos/3, t an /3=~  -l, /3=31.717 ° , qb=(l+x/5)/2. ioss 01 s c c 0 - s  0 

d~ c 0 0 s c s 
M = 0 c - c  s 0 - s  

c - s  - s  0 - c  0 
- s  0 0 c - s  c 

M yields an o r thogona l  subspace  d e c o m p o s i t i o n  

E 6---~ E 3 "~ E32 . (2.7) 

In E~, the  ac t ion  of  I is the one d iscussed  before  a n d  
i l lus t ra ted in Fig. 1. In Fig. 2 the e lements  of  I are 
descr ibed  in a s imi lar  f a sh ion  as in Fig. 1, but  for  the 
second  th r ee -d imens iona l  subspace  E 3. In E32, the  
ac t ion of  I a n d  o f  its genera to r s  are aga in  desc r ibed  
by the p e r m u t a t i o n s  given in Table  2. I f  one  chooses  
o r t h o n o r m a l  systems o f  coord ina tes  as ind ica ted  in 
the cap t ions  to Figs. 1 a n d  2, the ac t ion o f  the gen- 
era tors  m a y  also be descr ibed  by 3 x 3  ro ta t ion  
matr ices  given in Table  4. It can be seen that ,  for  
example ,  the  e lement  g5 co r r e sponds  in E 3 to a rota-  
t ion by 47r/5 (cf. Fig. 2). 

3. The hypercubic cell complex in E 6, its dual and its 
Kl~tze 

The hype rcub i c  latt ice in E 6 has  as its basis  an 
o r t h o n o r m a l  set of  vectors  bi, i = 1 , . . . ,  6. Its unit  cell 

® , G , Q 

I 

0 

Fig. 2. Stereographic projection of icosahedral symmetry opera- 
tions in E~. The fivefold axis labelled i corresponds to the 
projection of the hypercubic basis vector b, onto E23. For the 
labels of the threefold and twofold axes see proposition 2.2. For 
the coordinate description of the symmetry operations given in 
Table 4 we use orthogonal axes corresponding to the directions 
of the twofold axes 1, 15 and 8 respectively. 

Table  4. The irreducible representation [312+] and 
[312_] for the generators of  the icosahedral group in E 3 

and E 3 respectively 

For reasons of simplicity the generator g~ = csg3 c51 is given instead 
o f  g3; c o m p a r e  Figs .  1, 2. 

G r o u p  e l e m e n t  R e p r e s e n t a t i o n  

g~ 
"0 

1 
0 

"--I 

0 

0 

1 

0 

0 

[312 ] 

° ] 1 ~ l  _4~-t 

• -~ - 1  [0 
0 1 

1 0 

0 - 

°i] -1  

0 - 

[312_] 

qb -1 1 ] 

1 - ~  

0 1 

0 0 

1 0 

0 0" 

1 0 

0 - 1  

1 0 O" 

0 -1  0 

0 0 -1  

is the h y p e r c u b e  

h(6)  = {y l -½<_y .  b,<_½, i = 1 , . . . ,  6). (3.1) 

For  reasons  of  s implici ty  we have  chosen  ]bi[ = 1, 
hence  the vo lume  of  the unit  cell is 1. Its b o u n d a r i e s  
of  d imens ion  p, cal led p - b o u n d a r i e s  in wha t  fol lows,  
m a y  be cha rac te r i zed  by: 

3.1. Definition 
Let g = (e, r) deno te  a genera l  e lement  o f  the  hyper -  

oc tahedra l  g roup  O(6 ) .  The c o r r e s p o n d i n g  p -boun -  
da ry  is the set o f  points  

{ 6 

h(p; g)= y ] y = ½  ~ ero)br(j) 
j=p+l 

+½ i=1 ~" er(i)Ar(i)br(i)'-l<-AJ<-l} (3.2) 

where  e m p t y  sums  are def ined to be zero. 

The stabil i ty s u b g r o u p  of  ,0(6)  which  t r a n s f o r m s  
a p - b o u n d a r y  into i tself  is con juga te  to the  g r o u p  
S ( 6 - p ) x O ( p ) ,  and  f rom the d imens ions  o f  the 
g roups  the n u m b e r  o f  p - b o u n d a r i e s  is 

v ( p )  = ( 6 p ) . 2  6.p. (3.3) 

Let the t r ans la t ion  g roup  T act on the h y p e r c u b i c  
cell and  on its boundar i e s .  The c o r r e s p o n d i n g  
geomet r ic  object  in E 6 we call the hypercubic cell 
complex Y. I f  we restrict  this object  to all b o u n d a r i e s  
o f  d imens ion  up to p, we call it the p-skeleton Y(P) 
of  Y. These  not ions  are der ived f rom a lgebra ic  
topo logy  ( M u n k r e s ,  1984). N o w  we pass  to a 
geometr ic  object  in E 6 which  will be cal led the 
metrical dual Y*. 
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3.2. Definition 
The metrical dual boundary to a p-boundary is the 

set of points in E6: 

h * ( 6 - p ;  g)= yly=½ Y~ er(j)br(j) 
j=p+l 

6 } 
+½ 2 Er(j)Ar(j)br(j)- (3.4) 

j=p+l 

The ( 6 - p ) - b o u n d a r y  h * ( 6 - p ; g )  and the p- 
boundary h(p; g) intersect in a single point, have 
complementary dimension and are spanned, with 
respect to this point, by mutually orthogonal sets of 
vectors. We include h*(0)--0.  

If the translation group T acts on all dual boun- 
daries, it generates a geometric object which we term 
the metrical dual cell complex Y*. From definition 3.2, 
it is not hard to see that Y* has precisely the same 
intrinsic geometric structure as Y, but is shifted with 
respect to Y by the vector from the midpoint to a 
vertex of the first hypercube. This simplicity of the 
dual is a special feature of hypercubic lattices and 
does not generalize to other lattices (Kramer, 1989). 

Consider now a subspace decomposition of E 6 of 
the form 

E 6 ---> E 3 -31- E 3. (3.5) 

By the subscripts 1 and 2 we shall denote the 
orthogonal projections of vectors and of polytopes 
into these subspaces. 

3.3. Definition 
Let y(3) and y , (3 )  denote the 3-skeletons of Y and 

Y*. To a pair of metrical dual boundaries h(3; g) 
and h*(3 ;g)  associate the Klotz as the six- 
dimensional polytope 

kl(3 + 3; g) 

={y y=y l+y2 ,y2~h2(3 ;g ) , y~h*(3 ;g ) } .  (3.6) 

The two projections of a Klotz to the spaces E 3 and 
E 3 we term its 1-chart and its 2-chart. 

The projections of 3-boundaries to the subspaces 
E 3 and E 3 which form these charts have a simple 
interpretation: Given the three basis vectors which 
span the corresponding boundary,  one finds the pro- 
jections of these vectors in E 3 and E 3 as the vectors 
along the fivefold rotation axes in Figs. 1 and 2 with 
the labels corresponding to the three indices of the 
basis vectors. The projected boundaries are the rhom- 
bohedra spanned by these vectors. In particular the 
projections h* (3; g) are rhombohedra with one vertex 
at the point y- -0 .  These projections appear in two 
shapes, a thin and a thick rhombohedron. Both poly- 
hedra have point stability groups D 3 with respect to 
their centres, and each one can appear in ten possible 
orientations. This means that from two representa- 

tives, a thin and a thick rhombohedron,  one can 
generate by icosahedral rotations all orientations and 
by translation vectors projected to the subspace all 
positions. We shall choose the representatives so that 
the dihedral group D 3 specified in Table 1 becomes 
the stability group of these two rhombohedra.  We 
denote these two representatives by kl~ and kl~. The 
group elements g,~, g~ for these two representatives 
are defined as 

kl¢ = kI(3 + 3; ge) 

= {Y Y:Yl  +y2, y2 ~ h2(3; ge), Yl ~ h*(3; g~)} 

~:= a, fl (3.7) 

where from (3.2) and (3.4) 

h(3; g,~) = {y y = ½ ( - b s + b 4 + b 6 )  

+ ½(Alb~ + A2b2+ A3b3)} 
(3.8) 

h*(3; g~) ={y y = ½ ( - b s + b 4 + b 6 )  

+ ½(-Asb5 + A4b4 + A6b6)}, 

~=/3" 

h(3; g~) = {YIY = ½(b~ + b2 + b3) 

+½(-A5b5 + A4b4 "i- A6b6) } 

h*(3; g,)= {y y =½(b~ +b2+b3) 

+ ½(A~bz + A2b2 + A3b3)}. 

(3.9) 

From Fig. 1 it is easy to see that the 1-charts 
h*(3; g,~) and h*(3; g~) span a thin or a thick rhombo- 
hedron respectively whose threefold symmetry axis 
has the number 1. By acting with the coset representa- 
tives of I / D  3 o n  these two rhombohedra,  one obtains 
a total of 20 rhombohedra.  These 20 rhombohedra  
will play a fundamental  role in the quasicrystal model. 

We now summarize the main results of the six- 
dimensional analysis given by Kramer (1988), in the 
notation of § 2. Consider the two Kl6tze called kl,~ 
and kl~ specified in (3.7)-(3.9) and their images in 
E 6 under the coset generators of I / D  3. These 20 
six-dimensional polyhedra form a new fundamental 
domain (FD) for the hypercubic lattice in E 6. The 
translated copies of these 20 Kl6tze provide a periodic 
space filling of E 6. This means that a six-dimensional 
density could be supported on this collection of 
Kl6tze. 

With these results, one can describe a quasilattice 
in E 3 as follows. Consider a subspace E 3 in E 6 which 
contains the point c2. This subspace will intersect 
with the Kl6tze of the periodic space filling, and its 
intersection with a given Klotz will be its 1-chart, that 
is, a thin or a thick rhombohedron. These rhom- 
bohedra appear in face-to-face position, and they fill 
E31 non-periodically since, by construction, there 
can be no translation vector within E 3. This discrete 
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Table 5. Elements g of  the hyperoctahedral group g2 (6) 
which determine the representatives for p = 3, 4, 5 

[ 1 1 2 3 4 5  66] thin rhombohedron in E~ 
p = 3 g,, = 2 3 -5  4 

[, 
p = 3 g~ = _ 4 6 1 2 

p = 4  g~= 2 -5  -6  4 

[ i  2 3 4 5 63] 
p = 5 g~ = 4 5 6 2 

non-periodic geometric object formed from rhombo- 
hedra will be called the quasilattice. 

The boundaries of the representative quasicrystal 
cells are the faces, edges and vertices of rhombohedra 
described by the projections h * ( 6 - p ;  g), p =4,  5, 6. 
In E 6 they correspond to boundaries of dimension 
( 6 - p ) + 3  with 2-charts of the form h2(3; 4)- A rep- 
resentative Klotz boundary for fixed p is found by 
fixing a 1-chart h*(6 - p ;  g) and collecting all 2-charts 
h2(3; g) which have points on this boundary. These 
representative Klotz boundaries were found in 
Kramer (1988) and have the form of new types of 
Kl6tze 

k l ( ( 6 - p ) +  3; g) 

={Y Y=Y~ +Y2,Y2~ hz(p; g),y,  ~ h * ( 6 - p ;  g)}, 

p = 4 , 5 , 6 .  (3.10) 

For the choices g = ge given in Table 5, the representa- 
tive Klotz boundaries are stable for p = 4, 5, 6 under 
the point groups St = D2, D5 and I respectively. A 
full representative set with respect to the pure transla- 
tion group is obtained by acting with the generators 
of the cosets I /St .  If the density is concentrated on 
these boundaries and if the quasicrystal model is 
considered, then this density will be given as a func- 
tion on the points of h * ( 6 - p ;  g), independent of the 
points of hE(p, g) .  

The quasicrystal model considered in what follows 
is obtained by restricting the six-dimensional density 
so that on each Klotz it becomes independent of the 
coordinate x2 perpendicular to E 3. As a consequence, 
this density is essentially supported on the 1-chart of 
the 20 representative Kl6tze. If moreover we assume 
the icosahedral point symmetry, this density must 
have 0 3 symmetry on each rhombohedron, and it 
must be fixed to this rhombohedron independent of 
its orientation. In this quasicrystal model, the rhom- 
bohedral cells of the quasilattice described above play 
a role similar to the unit cells of periodic order. 

4. Fourier transform, structure factors 
and kinematical factors 

Consider the six-dimensional k-space and the 
reciprocal lattice yR with the reciprocal translation 

group T R. Clear ly  yR is again a hypercubic lattice. 
We introduce in k-space the same decomposition 

E 6 ~ E~ + E 3 (4.1) 

as in x-space and denote the projections of vectors 
in k-space again by the subscripts 1, 2. For the Fourier 
transform we start from: 

4.1. Proposition 
Let f(y~, Y2) denote the periodic density in E 6 on 

the hypercubic lattice, expressed in coordinates 
parallel and perpendicular to the subspace E 3, and let 

f(Y~ ) = f(Y,, Y2)]y2 :c2 (4.2) 

be its restriction to E 3. Then the Fourier transform 
of this density, taken as a function on E 31, is given by 

f (k , )  = [vol. ( F D ) ] - '  kR~T R 63(k , -k~ )  

x exp (ik g . c2)a(k,, k2); (4.3) 
where 

a(kR, kR) = ~ f(X~,X2) 
FD 

x exp [ - i ( k  R . xl + k  R • x2)] daxl dax2 

(4.4) 

are the Fourier coefficients of the function f(y~, Yz). 
For the proof see Kramer (1988), proposition 7.1. 

Now we choose the 20 Kl6tze of definition 3.3 as 
the fundamental domain. The Fourier coefficient 
becomes a first sum over two representatives kl~ and 
klo, and a second sum over the ten representatives of 
the coset I /D3 : 

1o 
a(k R, k~) = }-" }-" ~ f~(x, ,  x2) 

~j=a,/3 j = l  kl~(3+3;cjg~) 

x exp [ - i ( k  R . xl + k  R • x2)] daxl d3x2. 

(4.5) 

Here fo(x~, x2) denotes the density on the Klotz with 
label ~: = a or/3 and transformed by the coset gen- 
erator cj from Table 1. Icosahedral point symmetry 
requires that the density fo(x~, x2) on each Klotz has 
D3 point symmetry with respect to the centre, and 
that moreover fea(x~, x2) be independent of the coset 
label j. This means that there are only two representa- 
tive K16tze, each with D3 point symmetry, if the full 
space group (T, I) is considered. 

The expression of (4.5) with this space-group 
restriction is still general. In the quasicrystal model, 
the density on each Klotz is restricted by 

fo (x , ,  x2) = fo(x,) .  (4.6) 

The restricted density fo(x~) can now be associated 
with the 1-chart of the Klotz kle, that is, with a thin 
or a thick rhombohedron. Again, this three- 
dimensional density must have D3 point symmetry 
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with respect to the centre of the rhombohedron. 
Independence of the index j implies that the density 
be fixed to the rhombohedra independent of their 
orientation in E 3. These properties lead to: 

4.2. Proposition 
The Fourier transform of the icosahedral quasi- 

crystal model is given by 
10 

f ( k l ) = [ v o l . ( F D ) ]  -1 ~ ~ fej(k~)Q~j(kl) (4.7) 
~=a,/3 j = l  

where the structure factor 

frj(kl) = ~ f~(xl) exp ( - i k l .  xl) d3x1 (4.8) 
h~(3;cjg¢) 

is the Fourier transform of the density on a quasicrys- 
tal cell in E 3, of orientation given by the action of cj 
on the representative kl~ or kl~. The expression 

Qo(k,) = kR~T R 83(k l -k~ )  exp ( ik~ .  c2)Ko(k~) 

(4.9) 

will be called the quasilattice factor, and 

Ko(k2R) = ~ exp (--ik2R. x2) d3x2 (4.10) 
h2(3;cjg¢) 

will be called the kinematical factor. This kinematical 
factor is in E 3 the Fourier transform of the 2-chart 
of the Klotz labelled by s c and j. It is independent of 
the density and is completely determined by the 
geometry of the Klrtze. 

In deriving proposition 4.2 we used the fact that 
kl and k R are related by a t~ function. The kinematical 
factors will be computed in § 5. These factors play 
an important part in damping the Fourier coefficients 
for large values of kRI. 

If the density fo(xl) is concentrated on the boun- 
daries of a rhombohedron, that is, on the vertices, 
edges or faces, one obtains modified expressions for 
the Fourier transform which again involve quasi- 
lattice factors and kinematical factors. These 
expressions are computed in § 5. 

5. Kinematical factors and their computation 

As shown by Kramer (1988), the boundaries of the 
KIrtze require a special analysis in view of their 
different symmetry groups. In this section we compute 
with respect to the quasicrystal model the kinematical 
factors for density distributions non-vanishing only 
on Klotz boundaries of fixed dimension. A composi- 
tion of these density distributions leads to a general 
density distribution. 

We consider the Klotz boundaries defined in (3.10) 
for p = 6, 5, 4; p = 3 describes the original Klotz. The 
dual boundary h * ( 6 - p ;  g) is projected on E 3, the 
projected Klotz boundary kll ( (6 - p ) + 3; g) yields the 
vertices, edges and faces of the projected Klrtze 

kll(3 +3; g) for p = 6, 5, 4 respectively, whereas in E 3 
three-dimensional polytopes will be obtained. For 
p = 6 ,  5, 4, 3 the Klotz polytopes k l ( ( 6 - p ) + 3 ;  g) 
have the stability groups St = I, Ds, D2, D3 referred 

t It to their centres; the coset generators ci, ci, c~ of 1~St 
and the group elements g~ ~ O(6), which determine 
the representative Klotz boundaries, are given in 
Tables 1 and 5. The full set of boundaries in E 6 is 
obtained by first acting with the coset generators, then 
acting with all translations b~ T on the representa- 
tives. In contrast to the case p =3,  only one rep- 
resentative Klotz boundary exists for the cases p -> 4, 
i.e. given a density distribution on a representative 
Klotz boundary, the density on all other Klotz boun- 
daries with same dimensionality is fixed by symmetry. 
For example, at each vertex the same type of atoms 
must occur. The Fourier transform for a density distri- 
bution on a p-boundary is given by 

L 
j T ( k l ) =  ~ fP(kl)QP(k~) ( 5 . 1 )  

j = l  

with the quasilattice factor 

QP(kl) =kR~T R {83(k~-k R) exp (ik R . c2)KP(kR)}. 

(5.2) 

Here L is the number of coset generators. The struc- 
ture factors fP and the kinematical factors K~ are 
functions of the elements cjg,~, cjg~, cjgv or cj'g~. To 
compute the structure factors fP we substitute the 
integral variables by A r~p+l).../~r(6) and consider 
the density distributions f f  as functions of 
A r~p+~). • • A,~6). In Table 6 we give the explicit forms 
of fP and g p. 

The kinematical factor 

p R Kj(k2)  = ~ e x p ( - i k R . x 2 )  d3x2 (5.3) 
h2(P;g) 

consists of a three-dimensional integration over the 
three-dimensional polytopes h2(p; g). These poly- 
topes in E 3 are the 'shadows' of the p-dimensional 
boundary h(p; g) obtained by projection. As shown 
by Haase et al. (1987) h2(p; g), p = 6 ,  5, 4, 3 are 
zonohedra with p(p - 1) rhombic faces. For p = 6 we 
obtain the Kepler triacontahedron with 30 faces and 
for p = 3 the two different rhombohedra with six faces. 

To compute the kinematical factor we change the 
volume integral into a surface integral: 

exp ( - i k  2 . x2) d3x2 
v 

= ilk2] -2 f exp ( - i k 2 .  x2)(k2,  df). (5.4) 
o v  

The surface integral is the sum of ½p(p- 1) integrals 
over pairs of rhombic faces. With the auxiliary func- 
tion L(z) --sin ( z ) / z  the result of the computation is 
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Table 6. Structure factors fP(kl) and kinematical 
factors KP(k2) for p = 6, 5, 4, 3. 

f (A ,<p+~) . . .  A,<6)) deno t e s  the  dens i ty  d i s t r ibu t ion  de f ined  on  the  
p ro jec ted  r ep resen ta t ive  Klotz b o u n d a r y  kl t ((6 - p)  + 3; ge)" The  
p e r m u t a t i o n s  r are func t ions  o f  c~gv, c~gs, cjg~ or cjgo. L is the  
n u m b e r  o f  cose t  genera to rs .  
p = 6 ,  L = I  

:~(x,) = w~a3(xl) 

.~(kl) = w6 

K6(k2) = J e x p ( - i k 2 . x 2 )  d3x2 
h2(6) 

p = 5 ,  L = 6  

f~(xl) = f(Ar(6)) 
• 1 1 f~(k,) = exp (-,~k,e,.c6 , . b,-¢6n)~lb,<6).l 

× If(A,(6) ) "' exp (--l~ktAr(6)Er(6). br(6) I ) dAr(6) 

K~(k2) = ~ exp ( - i k  2 . x2) d3x2 
hz(5;c:g~) 

p = 4 ,  L=  15 

f~j (x,) = f(A,(5)A,(6 ~ ) 

f~j(kt) = exp -z~kt'l . ,=. (t)2lb,ts) ' x b,~6)t] 

xJf(A'-'5'A"6')exp( -i~k'" ,=5~ A ' ° ' r ' t ' ) b ' t ' " )  dA''5' dA''6) 

K?(k2) = J exp ( - i k  2 • x2) dSx2 
h2(4 ; c~g/i) 

p = 3 ,  L=10  

f~(xt) = E fli(Ar(4)Ar(SJAr(6)) 
,~=a,O 

{(, ~ ( k , ) =  Y. exp - , 2k , .  (~)3 

× Idet (brt4)lbrcs)lbr(6)!)1 ~f~(Art4~Ar~.5)Art61) 

x e x p ( - i ~ k , .  ~=nA,ti,e,o,b,~o,)dAr(a)dAr(5) dart6) } 

K ~(k2) = ~ exp (- ik2.  x2) d3x2 + J exp ( - i k  2 . x 2) dSx2 . 
h2(4;clg a ) h2(a;c/g B ) 

given by 

h2(P,g) 
exp ( - i k 2 .  x2) dax2 

j = p + l  

P 
x21k~l -~ E {[k=. (brc,)2Xbru)2)] 

i<j 

1 x (k2. q,-c~)rCi)) L(~k2 • b,.(o2) 

X L(½k2.b,u)2)L(k2.qr(i),O))} (5.5) 

for p = 3, 4, 5, 6. The vector % labels the centre of 
the zonohedral face spanned by the vectors b~2 and 
bj2. It is defined by 

P 
qo=½ ~ sign[bn.(b,2xbj2)]bn.  (5.6) 

l=  l , l # i j  

Note that for increasing [k2[ the product of the three 
functions L yields a decrease of the amplitude of the 
kinematical factor to a value smaller than any given 
value m > 0. 

6. Examples: point scatterers in quasicrystals 

The analytical form of the Fourier transform given 
in (5.1) allows a computation of diffraction patterns 
of quasicrystals. In the Born approximation the scat- 
tered intensity in a direction defined by a wave vector 
k is proportional to f ( k - k  °) 2, k 0 denotes the wave 
vector of the incident wave (k °, k~ E3). If elastic 
scattering is assumed (Ikl = Ik°l) and if Ik°l is large 
compared to reciprocal-lattice distances (i.e. for an 
incident beam of high energy) the diffraction pattern 
is determined by those wave vectors k which lie in 
the Ewald plane defined by its normal vector k °. To 
compute If(kl)l 2 we replace t~3(kl-kR), t~3(kl-k~) 
by ~ij. ~3(kl- k~), i.e. the ~ functions are approxima- 
tions of functions with very small half-widths. 

The projected reciprocal-lattice vectors k R lie dense 
in E~; thus in a finite area of the Ewald plane there 
exists an infinite number of projected vectors k R. 
Restriction to reciprocal-lattice vectors IkRI with 
[k~[ < k2max leads to a finite number of k R in a finite 
area of the Ewald plane. Since the kinematical factor 
becomes small for large Ik21, for an appropriate choice 
of k2max no vector k R with intensity larger than a 
given minimal intensity will be excluded. The restric- 
tion discussed amounts to neglecting reciprocal- 
lattice vectors k R with intensities smaller than the 
given minimal intensity. 

We choose the incident wave vector k ° parallel to 
a fivefold axis of the quasilattice: k°oc b~l. The condi- 
tions 

(a) k ~ . b ~ , = O  

(b) Ik~l< 10x27r (6.1) 

(c) Ik~]< k2max=20 

yield a finite set of vectors k R in E 6. Conditions (a) 
and (b) select a circle with radius 1 0 x 2 ~  on the 
Ewald plane in E 3, condition (c) excludes vectors 
with negligible intensity. The value of k2max is esti- 
mated by setting the minimal intensity equal to 1% 
of the maximal intensity defined by If(k~ = 0)12. 

The density distributions on the Klotz boundaries 
are chosen as point scatterers defined by ~ functions. 
The point scatterers are placed into the centres of the 
boundaries: 

f ( X l ) =  Wp~3(Xl)  ; p = 6  

f (Ar(p+l) . . .  /~r(6)) = W p ~ 6 - P ( l ~ r ( p + l )  " ' "  /~r(6)) ;  (6.2) 

p = 5 , 4 , 3 .  

Hence the structure factors are given by 

f P = 6 ( k l )  ---- Wp', p = 6 

( 6 ) 
fP(k~)= % exp - - i l k l .  2 F.r(j)brU)l 

j = p + l  

X (½)cP-6)V(p); p = 5, 4, 3. 

(6.3) 
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V(p) gives the (6-p)-dimensional volume spanned 
by the vectors br(p÷~)~ . . .  b r ( 6 ) l  in E 3. We determine 
the weight factors Wp by the conditions 

fP(k~ = 0 ) =  1, p =6, 5,4, 3. (6.4) 

In Figs. 3(a)-(f)  we give some results ofthe computed 

diffraction patterns• The fivefold symmetry together 
with the inversion symmetry caused by Friedel's law 
lead to a tenfold symmetry of [f(k~)l 2. Therefore in 
Figs. 3(a)-(f)  only one sector with aperture angle 36 ° 
is shown• The vectors k R are labelled by six Miller 
indices h~ . .  h 6 defined by k R 27r 6 • = ~"~-/=1 hibi. In 

2 4 6 8 

(a) 

/ ,l\lll | x ~  

)...-..,. -'v';'\ ,\,\ 
2 t~ 6 8 

(b) 

• / "N' I 
/6  

, I 

0 2 4 6 8 

(c) 

2 4 6 8 
(d) 

p / 

"'I 
0 2 

\ 
t~ 6 8 

(e) 

668 t \ \ 

t~ 6 

(f) 

8 

Fig. 3. Intensity of  diffraction, represented by vertical bars, in a section of  a plane perpendicular to a fivefold axis. The numbers in 
the plane mark multiples of  2~-. Point-like atoms are assumed (a) at the cent.res of  all thin rhombohedra (p = 3); (b) at the centres 
of  all thick rhombohedra (p = 3); (c) at the centres of  all thick and all thin rhombohedra (p = 3); (d) at the centres of  the faces of  
all rhombohedral  cells (p =4) ;  (e) at the centres of  the edges of  all rhombohedral  cells (p = 5); and ( f )  at the vertices of  all 
rhombohedral cells (p = 6). 
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T a b l e  7 .  Miller indices h i . . .  h 6 ,  intensities and coordinates of  the diffraction peaks (cf. Fig. 3 )  

T h e  absc i s sa  is pa ra l l e l  to ( b s - b 2 ) t ,  the  o r d i n a t e  is p e r p e n d i c u l a r  to the  absc issa .  T a b l e  7 ( a )  c o r r e s p o n d s  to Fig. 3 ( a ) ,  T a b l e  7 (b )  to 

Fig.  3 (b )  etc. 

h t h 2 h a h 4 h 5 h 6 Int .  Absc .  Ord .  
( a )  p = 3, t h i n  r h o m b o h e d r a  o c c u p i e d ,  th ick  r h o m b o h e d r a  v a c a n t  

0 0 0 0 0 0 1-000 0.00 0.00 
0 -1  0 0 1 0 0.046 1.20 0.00 
0 -1  -1  1 1 0 0.019 1.95 0-00 
0 - 2  0 0 2 0 0.022 2-41 0.00 
0 - 2  -1  1 2 0 0.032 3.15 0.00 
0 - 2  - 2  2 2 0 0.240 3.89 0-00 
0 - 3  - 1  2 2 0 0.012 4.12 0.71 
0 - 3  - 2  3 2 0 0.014 4.87 0.71 
0 - 3  - 2  2 3 0 0.041 5.10 0.00 
0 - 4  -1  2 3 0 0.027 5.33 0.71 
0 - 4  - 2  2 4 0 0.585 6"30 0.00 
0 - 4  - 3  3 4 0 0.012 7.04 0-00 
0 - 5  -1  3 3 0 0.012 6.30 1.41 
0 - 5  - 2  3 4 0 0.024 7.27 0-71 
0 - 5  - 2  2 5 0 0.026 7-50 0.00 
0 - 5  - 3  3 5 0 0.039 8.25 0.00 
0 - 5  - 4  4 5 0 0.037 8.99 0.00 
0 - 6  - 2  4 4 0 0-032 8-25 1.41 
0 - 6  - 3  4 5 0 0.037 9.22 0-71 
0 0 -1  1 1 -1  0.015 1.34 0.44 
0 - 2  -1  2 2 -1  0.017 3.52 1-14 
0 - 2  - 2  3 2 -1  0.012 4.27 1.14 
0 - 3  0 2 2 -1  0.012 3-75 1-85 
0 - 3  - 1  3 2 -1  0-030 4.49 1-85 
0 - 3  - 1  2 3 -1  0.030 4.72 1.14 
0 - 3  - 2  3 3 -1  0.030 5.47 1.14 
0 - 4  0 3 2 -1  0-027 4.72 2.56 
0 - 4  -1  4 2 -1  0-027 5-47 2.56 
0 - 4  -1  3 3 - 1  0.039 5.70 1.85 
0 - 4  -1  2 4 -1  0.027 5.93 1.14 
0 - 4  - 2  3 4 -1  0.032 6.67 1-14 
0 - 4  - 3  3 5 -1  0.018 7.64 0.44 
0 - 5  0 3 3 -1  0.012 5.93 2.56 
0 - 5  - 2  4 4 -1  0.029 7.64 1"85 
0 - 5  - 2  3 5 -1  0"011 7-87 1-14 
0 - 5  - 3  4 5 -1  0"013 8.62 1"14 
0 - 5  - 3  3 6 -1  0-020 8"85 0-44 
0 - 6  - 2  4 5 -1  0"021 8"85 1"85 
0 - 6  - 3  4 6 -1  0"040 9"82 1.14 
0 - 2  -1  2 3 - 2  0.012 4.12 1-58 
0 - 3  0 2 3 - 2  0.014 4.35 2-29 
0 - 3  - 1  3 3 - 2  0"030 5"10 2"29 
0 - 3  - 2  4 3 - 2  0"010 5.84 2"29 
0 - 3  - 2  3 4 - 2  0-010 6-07 1"58 
0 - 4  -1  4 3 - 2  0"032 6-07 3-00 
0 - 4  - 2  4 4 - 2  0"137 7"04 2"29 
0 - 5  0 4 3 - 2  0"024 6"30 3"70 
0 - 5  -1  5 3 - 2  0"011 7-04 3"70 
0 - 5  -1  4 4 - 2  0"029 7.27 3"00 
0 - 6  0 4 4 - 2  0"032 7"50 3.70 
0 - 6  -1  5 4 - 2  0"021 8"25 3"70 
0 - 6  - 2  6 4 - 2  0.078 8"99 3"70 
0 - 6  - 2  5 5 - 2  0"037 9"22 3.00 
0 - 6  - 2  4 6 - 2  0"078 9-45 2"29 
0 - 4  -1  5 3 - 3  0"018 6"44 4"14 
0 - 5  -1  6 3 - 3  0.020 7"42 4"85 
0 - 5  -1  5 4 - 3  0"013 7-64 4.14 
0 - 6  0 5 4 - 3  0"037 7.87 4"85 
0 - 6  -1  6 4 - 3  0"040 8"62 4.85 

(b )  p = 3, t h i n  r h o m b o h e d r a  vacan t ,  th ick  r h o m b o h e d r a  o c c u p i e d  

0 0 0 0 0 0 1"000 0"00 0"00 
0 -1  -1  1 1 0 0-037 1.95 0"00 
0 - 2  0 1 1 0 0"013 2-18 0"71 
0 - 2  -1  2 1 0 0"012 2"92 0"71 
0 - 2  0 0 2 0 0"013 2"41 0"00 
0 - 2  -1  1 2 0 0"037 3-15 0"00 
0 - 2  - 2  2 2 0 0.237 3"89 0-00 
0 - 3  -1  2 2 0 0.024 4"12 0"71 
0 - 3  - 1  1 3 0 0.019 4.35 0"00 
0 - 3  - 2  2 3 0 0"035 5"10 0.00 

h t h 2 h 3 h 4 h 5 h 6 Int .  Absc .  Ord .  

0 - 4  - 2  3 3 0 0.020 6.07 0.71 
0 - 4  - 2  2 4 0 0-584 6.30 0.00 
0 - 4  - 3  3 4 0 0.026 7.04 0.00 
0 - 5  - 3  3 5 0 0-040 8.25 0-00 
0 - 6  - 2  4 4 0 0.022 8-25 1.41 
0 - 6  - 3  3 6 0 0.016 9-45 0.00 
0 - 2  0 1 2 -1  0.012 2.78 1.14 
0 - 2  -1  2 2 -1  0.033 3-52 1.14 
0 - 3  0 2 2 -1  0.024 3.75 1-85 
0 - 3  -1  3 2 -1  0.015 4.49 1.85 
0 - 3  -1  2 3 -1  0.015 4-72 1.14 
0 - 4  -1  3 3 - l  0.028 5.70 1-85 
0 - 4  - 2  4 3 -1  0.012 6.44 1.85 
0 - 4  - 2  3 4 -1  0-027 6.67 1.14 
0 - 5  - l  4 3 -1  0.017 6.67 2-56 
0 - 5  -1  3 4 -1  0.017 6.90 1.85 
0 - 5  - 2  4 4 -1  0.034 7.64 1.85 
0 - 5  - 2  3 5 -1  0-014 7.87 1-14 
0 - 5  - 3  4 5 -1  0-025 8-62 1.14 
0 - 6  -1  4 4 -1  0.012 7-87 2.56 
0 - 6  - 2  5 4 -1  0.015 8.62 2.56 
0 - 6  - 2  4 5 -1  0.027 8-85 1.85 
0 - 6  - 3  5 5 -1  0-027 9.59 1.85 
0 - 6  - 3  4 6 -1  0.016 9.82 1-14 
0 - 4  0 3 3 - 2  0.020 5-33 3.00 
0 - 4  - 1 4 3 - 2  0-027 6.07 3.00 
0 - 4  -1  3 4 - 2  0.012 6-30 2-29 
0 - 4  - 2  4 4 - 2  0.131 7.04 2-29 
0 - 5  -1  5 3 - 2  0.014 7-04 3-70 
0 - 5  -1  4 4 - 2  0-034 7-27 3.00 
0 - 5  - 2  5 4 - 2  0.022 8-02 3.00 
0 - 5  - 2  4 5 - 2  0-022 8-25 2.29 
0 - 6  0 4 4 - 2  0.022 7.50 3.70 
0 - 6  -1  5 4 - 2  0.027 8.25 3-70 
0 - 6  - 2  6 4 - 2  0.070 8-99 3.70 
0 - 6  -1  4 5 - 2  0.015 8.48 3-00 
0 - 6  - 2  5 5 - 2  0-038 9.22 3-00 
0 - 6  - 2  4 6 - 2  0.070 9.45 2.29 
0 - 5  -1  5 4 - 3  0-025 7-64 4.14 
0 - 6  -1  6 4 - 3  0.016 8.62 4-85 
0 - 6  -1  5 5 - 3  0-027 8.85 4.14 

(C) p = 3, t h i n  r h o m b o h e d r a  a n d  th ick  r h o m b o h e d r a  o c c u p i e d  

0 0 0 0 0 0 1-000 0"00 0-00 
0 --1 -1  1 1 0 0-032 1"95 0-00 
0 - 2  0 1 1 0 0"011 2"18 0"71 
0 - 2  --1 2 1 0 0"010 2-92 0-71 
0 --2 0 0 2 0 0-016 2-41 0"00 
0 - 2  --1 1 2 0 0"036 3"15 0"00 
0 - 2  - 2  2 2 0 0"238 3-89 0.00 
0 - 3  -1  2 2 0 0.021 4-12 0.71 
0 - 3  - 2  2 3 0 0.037 5.10 0.00 
0 - 4  - 2  3 3 0 0.015 6.07 0.71 
0 - 4  - 2  2 4 0 0.585 6.30 0.00 
0 - 4  - 3  3 4 0 0.022 7-04 0.00 
0 - 5  - 2  3 4 0 0-013 7.27 0-71 
0 - 5  - 3  3 5 0 0.039 8.25 0-00 
0 - 6  - 2  4 4 0 0-025 8.25 1.41 
0 - 6  - 3  4 5 0 0.012 9-22 0.71 
0 - 6  - 3  3 6 0 0.011 9-45 0.00 
0 - 2  0 1 2 -1  0-010 2.78 1.14 
0 - 2  -1  2 2 -1  0.028 3.52 1.14 
0 - 3  0 2 2 -1  0.021 3.75 1-85 
0 - 3  -1  3 2 -1  0.019 4.49 1-85 
0 - 3  -1  2 3 -1  0-019 4-72 1.14 
0 - 4  -1  3 3 -1  0.031 5-70 1-85 
0 - 4  - 2  3 4 -1  0.028 6.67 1.14 
0 - 5  -1  4 3 -1  0-010 6.67 2.56 
0 - 5  -1  3 4 -1  0.010 6.90 1-85 
0 - 5  - 2  4 4 -1  0.033 7-64 1.85 
0 - 5  - 2  3 5 -1  0.013 7-87 1-14 
0 - 5  - 3  4 5 -1  0.022 8-62 1.14 
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Table 7 (cont.) 

hi h2 h3 h4 h5 h6 Int. Absc. Ord. 
(c) p = 3 (cont.) 

0 - 6  -2  4 5 -1  0.025 8-85 1.85 
0 - 6  -3  5 5 -1 0.019 9-59 1-85 
0 -6  -3  4 6 -1 0-021 9.82 1-14 
0 - 4  0 3 3 - 2  0.015 5.33 3.00 
0 - 4  -1 4 3 - 2  0.028 6.07 3-00 
0 - 4  - 2  4 4 - 2  0.133 7-04 2.29 
0 -5  0 4 3 -2  0.013 6.30 3.70 
0 -5  -1  5 3 - 2  0.013 7.04 3.70 
0 -5  -1  4 4 -2  0.033 7.27 3.00 
0 -5  -2  5 4 -2  0.015 8.02 3.00 
0 -5  -2  4 5 - 2  0.015 8.25 2.29 
0 -6  0 4 4 -2  0.025 7.50 3.70 
0 -6  -1  5 4 - 2  0-025 8.25 3.70 
0 - 6  - 2  6 4 - 2  0.072 8-99 3.70 
0 - 6  - 2  5 5 - 2  0.038 9.22 3.00 
0 -6  - 2  4 6 - 2  0.072 9-45 2.29 
0 -5  -1  5 4 -3  0.022 7.64 4-14 
0 -6  0 5 4 -3  0-012 7-87 4-85 
0 -6  -1 6 4 -3  0-021 8-62 4-85 
0 -6  -1  5 5 -3  0.019 8-85 4.14 

(d)  p = 4  

0 0 0 0 0 0 1.000 0.00 0.00 
0 -2  - 2  2 2 0 0.033 3.89 0-00 
0 - 4  - 2  2 4 0 0.324 6.30 0.00 

(e) p = 5  

0 0 0 0 0 0 1.000 0.00 0.00 
0 -1  -1  1 1 0 0.052 1.95 0.00 
0 -2  -1  1 2 0 0.055 3-15 0.00 
0 - 2  -1 2 2 -1  0.012 3.52 1.14 
0 -3  -1 2 3 -1 0.011 4.72 1-14 
0 -3  -1 3 2 -1  0.011 4.49 1.85 
0 - 4  -1  3 3 -1 0.055 5.70 1.85 

h I h 2 h 3 h 4 h 5 h 6 Int. Absc. Ord. 
(e) p = 5 (cont.) 

0 - 4  -1 4 3 -2  0.031 6.07 3.00 
0 -5  -1 4 4 - 2  0.056 7.27 3.00 
0 -5  -1 5 4 -3  0.014 7.64 4.14 
0 -6  -1  5 4 -2  0-029 8-25 3.70 
0 - 6  -1 6 4 -3  0.025 8.62 4-85 
0 -3  - 2  2 3 0 0.095 5.10 0.00 
0 - 4  - 2  2 4 0 0-133 6.30 0.00 
0 - 4  - 2  3 4 -1 0.031 6.67 1-14 
0 -5  - 2  4 4 -1 0.056 7.64 1.85 
0 - 6  -2  4 5 -1  0.029 8.85 1-85 
0 -6  - 2  5 5 -2  0.095 9.22 3-00 
0 -5  -3  3 5 0 0.107 8.25 0.00 
0 -5  -3  4 5 -1  0.014 8.62 1.14 
0 - 6  -3  4 6 -1 0.025 9.82 1.14 

( f )  p = 6  
0 0 0 0 0 0 1-000 0.00 0.00 
0 -1  -1 1 1 0 0.135 1.95 0.00 
0 -2  -1  1 2 0 0"502 3-15 0-00 
0 -3  -2  2 3 0 0"775 5"10 0-00 
0 - 4  - 2  2 4 0 0"031 6"30 0"00 
0 -5  -3  3 5 0 0"908 8"25 0"00 
0 -2  -1  2 2 -1  0"049 3"52 1"14 
0 -3  -1 3 2 -1  0'013 4"49 1"85 
0 -3  -1 2 3 -1 0"013 4"72 1-14 
0 - 4  -1  3 3 -1 0.377 5"70 1-85 
0 - 4  - 2  3 4 -1  0.167 6"67 1.14 
0 -5  - 2  4 4 -1  0"280 7.64 1"85 
0 - 6  - 2  4 5 -1 0"041 8"85 1-85 
0 - 6  -3  4 6 -1 0-081 9"82 1.14 
0 - 4  -1  4 3 - 2  0.167 6-07 3"00 
0 -5  -1 4 4 -2  0"280 7"27 3"00 
0 -6  -1 5 4 -2  0"041 8-25 3"70 
0 -6  - 2  5 5 - 2  0"701 9"22 3-00 
0 - 6  -1 6 4 -3  0"081 8"62 4"85 

Tables 7(a)- ( f )  we give the indices of the diffraction 
peaks. 

By comparing the different diffraction patterns 
notice that the weight factors wp are not identical. 
Nevertheless note the qualitative differences of Figs. 
3 (a ) - ( f ) .  As in periodic crystallography, the position 
of the diffraction peaks is determined by the quasilat- 
tice, whereas the intensity of the peaks depends on 
the density distribution. 
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